
Update on Topology Aware Scheduling
(aka TAS)

Work done in collaboration with
•  J. Enos, G. Bauer, R. Brunner, S. Islam

•  R. Fiedler

•  Adaptive Computing

2

When things look good

3 Image credit: Dave Semeraro

What’s the problem?

•  Efficient job scheduling
on a large torus is not
easy.

•  Over time (between large
jobs, reboots) fragmented
allocations appear.

•  Fragmentation can lead
to degraded and variable
application performance.

Image credit: Robert Sisneros

4

•  4,116 XE node jobs run at different times.
•  Run to run variability

•  makes it difficult to assign a reasonable wall clock time.
•  has an impact on job throughput.

0	

200	

400	

600	

800	

1000	

1200	

8:38	
 9:07	
 9:36	
 10:04	
 10:33	
 11:02	
 11:31	
 12:00	

To
ta
l	
 r
un

	
 	
 *
m
e	

(s
)	

Job	
 start	
 *me	
 (h:mm)	

5

Blue Waters Torus

•  24x24x24 gemini
routers, 2 nodes each

•  XE nodes not shown
•  XK nodes (red) 15x6x24
•  XIO nodes (yellow)
•  Links along X & Z

dimensions 2x faster
than links along Y.

Image credit: VMD

6

While waiting for TAS

•  Changed default node ordering
to favor XZ slabs; improving
aggregate interconnect
bandwidth and location.

•  Workload of MILC, NWCHEM,
PSDNS ChaNGa, NAMD,
WRF, CESM, DNS_distuf
showed average
improvements in runtime of
15% to 25%.

•  Change does not address job-
job interaction.

7

be
fo

re

af
te

r

•  Experimented with pre-defined moab features
(explicit node lists) and nodesets of these
features.

•  Worked well for some teams to improve
performance and limit job-job interference.

•  Impacted job throughput (having to wait longer for
specific sets of nodes).

•  Responsiveness of moab adversely affected.

8

Impact of topology aware scheduling

•  Important to scientists
•  Reduction in time to solution
•  Reduction of run-to-run variation
•  Get science done

•  Important to the project and funder
•  Get Science done
•  System utilization

9

How to interact with TAS

•  Topology aware user specifications
•  #PBS –l geometry=X×Y×Z with some wild cards
•  Application communication characteristics:

•  #PBS –l comm={high|low}[:{high|low}][:{global|local}]
•  “low” or “high” communication intensity.

•  bi-section bandwidth consideration.
•  “low” of “high” communication sensitivity.

•  allow for fragmented node allocations.
•  “global” or “local” as the dominant communication pattern.

•  Cost function for waiting for shape.

10

Workload Tests

•  Initial tests limited to allocate convex shapes to
lessen internode communication interference on
other jobs (dimension ordered routing).

•  The scheduler was able to try different
rectangular shapes weighted by aggregate
bandwidth.

Image credit: Adaptive

11

Workload Test
•  Synthetic workload composed of several applications

•  MILC, PSDNS, NAMD, NWCHEM, ChaNGa,
QMCPACK, DNS_distuf, WRF, SpecFEM3D_globe.

•  Represents a broad range of communication patterns.
•  Numerous representative node counts and scaled run

times based on actual Blue Waters production logs.
•  Initial conditions set by stub jobs.

•  1544 jobs (XE and XK) run in two hour window
•  Good scheduler responsiveness
•  Good utilization

12

•  Top 10 jobs shown.
•  XZ slabs favored.
•  Some jobs

specified X×Y×Z.

Image credit: Dave Semeraro

13

Preliminary Workload Test Results

•  324 nodes - MILC
•  3 shapes used in

workload testing.
•  “none” collected in

batch
•  17% reduction in

average runtime
•  10x reduction in CoV.
•  Larger impact at larger

scales. 0	

50	

100	

150	

200	

250	

300	

350	

400	

11x2x8	
 8x2x11	
 9x2x9	
 none	

Av
er
ag
e	

to
ta
l	
 s
te
p	

*m

e	

(s
)	

"shape"	

14

Preliminary Workload Test Results

•  Worst Application run time CoV is less than 2%
•  Worst ‘Per Shape’ Application CoV is less than 1.25%

0.0%	

0.5%	

1.0%	

1.5%	

2.0%	

2.5%	

Co
effi

ci
en

t	
 o
f	
 V

ar
ia
nc
e	
 All	
 shapes	

Shape	
 1	

Shape	
 2	

15

Preliminary Workload Test Results

•  Speed-up from using topology aware scheduling

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

MILC	
 4116	
 NAMD	
 3272	
 NWCHEM	
 400	

Av
er
ag
e	

sp
ee
d-­‐
up

	

16

Node Selection and Task Layout

•  Most codes will need to consider MPI rank
ordering to take full advantage of nodes
provided by topology aware scheduler.

•  Topoaware: Provides task mapping for 2, 3, &
4D Cartesian grid virtual topologies.

•  Developed by Bob Fiedler, Cray.
•  In each z-pencil, extends set of selected geminis

along z if needed to skip unavailable nodes
•  Determines multiple valid layouts and evaluates

layout quality
•  Allows unbalanced layouts

•  Nodes on prism boundaries may have fewer
tasks

•  Enables more good layouts for more virtual
topology sizes

•  Scheduler ensures allocation has desired gemini
count in each z-pencil

17

•  Virtual topology: 32x32x32
•  10x improvement possible.
•  Hop count not the only story.
•  Reduction in congestion and

improved bandwidth
important.

•  grid_order provided by Cray
to order communication
between nearest neighbors
in a grid.

Placement Iter	
 *me	

(ms)

Max	
 hops

Default	
 8x8x8 11.315 9
Grid_order	
 8x8x8 7.722 16
Topaware	
 8x8x8 2.771 2
Topaware	
 11x6x11	

(unbalanced)

1.287 2

Topaware	
 11x8x8	

(unbalanced)

1.147 2

Topaware	
 8x8x11	

(unbalanced)

1.214 2

Topaware	
 11x7x8	

(unbalanced)

1.782 2

Topaware	
 8x7x11	

(unbalanced)

1.737 2

Topaware	
 11x8x7	

(unbalanced)

1.580 2

Topaware	
 7x8x11	

(unbalanced)

1.690 2

Topaware tests: Halo exchange

18

Topaware tests: MILC
•  MILC

•  Virtual topology 21x2x21x24
•  1764 nodes, 12 tasks each
•  21x2x21 geminis
•  2.2x faster with Topaware than with

grid_order –c 2,2,2,2 on same
nodes

•  grid_order can provide 2x over not
using grid_order.

•  See Topology Consideration talk at
December 2013 workshop.

Placement Run	
 Time	
 (10	

itera*ons)

Grid_order 254.0

Topaware 116.4

19

Conclusions and Next Steps

•  From initial tests with topology aware scheduling we
see
•  improvements in overall performance and run-to-run

variability
•  promising utilization numbers

•  Further tests coming and then deployment.

20

•  What we like to see on Blue Waters …

Image credit: Dave Semeraro

21

